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The eddy-damped quasi-normal Markovian (EDQNM) turbulence theory has been
applied to the covariance spectrum of two passive isotropic scalars with different
diffusivities in stationary isotropic turbulence. A rigorous application of EDQNM,
which introduces no new modelling assumptions or constants, is shown to yield a
covariance spectrum that violates the Cauchy–Schwartz inequality over some of the
wavenumbers. One approach to this problem is to derive a model based on a stochastic
differential equation, as its presence guarantees realizability. For an isotropic scalar,
it is possible to construct a Langevin equation for the Fourier transform of the scalar
concentrations that is consistent with each EDQNM scalar autocorrelation spectrum.
The Langevin equations can then be used to construct a model for the covariance
spectrum that is realizable. However, the resulting covariance transfer term does not
properly conserve the scalar covariance, and so the model is still not satisfactory. The
problem can be traced to the Markovianization step, which leads to the presence of
the scalar diffusivities in the transfer functions in an unphysical fashion. A simple fix
is described which reconciles the two approaches and gives conservative, realizable
results for all time.

Next, we apply the EDQNM theory to a more general system involving the mixing
of anisotropic scalars. Anisotropy in this case results from a uniform mean gradient
of the two scalar concentrations in one direction. As with the isotropic scalars, direct
application of the EDQNM closure results in a covariance spectrum that violates the
Cauchy–Schwartz inequality; however, in this case it is not as simple to construct a
Langevin model that reproduces all of the spectral interactions that result from the
EDQNM procedure. Nevertheless, we show that the same modification of the inverse
time scale as is done for the isotropic scalar results in an anisotropic scalar covariance
spectrum that is realizable for all times.

1. Introduction
There are several important applications which involve the mixing of either inert

or reacting species in a turbulent flow. The most celebrated example is combustion,
in which fuel and oxidizer mix and react to produce combustion products and a great
deal of energy. The rate of reaction in turbulent flames is often sufficiently large that
the overall system is mixing limited, underscoring the need for reliable descriptions
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304 M. Ulitsky and L. R. Collins

of turbulent mixing. In non-premixed combustion, the interaction of several chemical
species with different molecular diffusivities leads to the phenomenon known as
differential diffusion. This complex phenomenon has been observed experimentally
in both non-reacting (Kerstein et al. 1989) and reacting (Drake, Pitz & Lapp 1986;
Chen, Bilger & Dibble 1990; Vranos et al. 1992) flows. Most theoretical models of
turbulent diffusion flames make the simplifying assumption that all diffusivities (i.e.
that of each species and temperature) are identical (often referred to in the literature
as the unity Lewis number assumption). This simplification is extremely attractive,
since it ultimately leads to a Shvab–Zeldovich conserved scalar formulation (Williams
1985), regardless of the number of reacting species involved. While the unity Lewis
number assumption may be computationally efficient, it is suspect at low to moderate
Reynolds numbers where significant effects due to differential diffusion have been
observed (Bilger & Dibble 1982).

Recent numerical studies by Yeung & Pope (1993) and later by Yeung (1996) have
demonstrated that differential diffusion, being of molecular origin, occurs initially at
high wavenumbers and then progresses to lower wavenumbers with time. These results
suggest that a model based on a spectral or Fourier representation of the velocity and
scalar fields can provide valuable information about this process. Moreover, a spectral
description of mixing is attractive because the linear diffusion terms are exact, and
thus effects such as differential diffusion should be well captured.

In this study, we consider the interaction of two passive scalars (with different
diffusivities) using the eddy-damped quasi-normal Markovian (EDQNM) theory. The
EDQNM theory has previously been shown to be an effective tool for investigating
both turbulent energy (Andre & Lesieur 1977; Lesieur 1987) and passive scalar spectra
(Herring et al. 1982; Nakauchi, Oshima & Saito 1989). Originally, we intended to
extend the axisymmetric spectral model of Herr, Wang & Collins (1996) for a single
scalar to the more general case of multiple scalars with different diffusivities. However,
despite the fact that the present model introduces no additional assumptions or new
constants, the EDQNM scalar covariance spectrum is shown to violate a Cauchy–
Schwartz condition over a range of wavenumbers.

To assist in understanding the origin of the unrealizable spectra, a parallel study of
two forced isotropic scalars is presented. One advantage of the simpler isotropic system
is that it is possible to develop an alternative model based on a Langevin equation.
As noted and exploited in much of Kraichnan’s earlier work (an excellent review
of this work can be found in Kraichnan 1991), models developed from stochastic
differential equations are guaranteed to be realizable. Indeed, the Langevin-based
model appears to solve the problem; however, closer scrutiny shows that the model
for the covariance transfer spectrum derived via the Langevin equation does not
properly conserve the scalar covariance, and thus is unphysical as well. Comparing
the EDQNM and Langevin-based closures shows that they can be made consistent
only by slightly altering the inverse time scale that results from Marovianization. It
should be noted that the inverse time scales from all three scalar spectra must be
modified. That is, it is not sufficient to simply change the inverse time scale for the
scalar covariance spectrum. Given this modification, the model is both conservative
and realizable for all time. Also, for a Schmidt number of unity, the autocorrelation
spectra will be equivalent to the standard EDQNM model for these spectra.

In principle, a similar approach can be taken to correct the more general axisym-
metric scalar spectrum that arises in the presence of uniform mean scalar gradients;
unfortunately, there appears to be no equivalent Langevin model for the anisotropic
scalar spectrum that reproduces all of the spectral interactions from the EDQNM
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theory in a consistent fashion. However, if we substitute the modified inverse time
scale derived earlier for the isotropic scalar, the resulting EDQNM model yields a
realizable covariance spectrum for all times and for all combinations of the scalar
diffusivities we considered. A relatively simple a posteriori argument is presented that
explains why the modification to the inverse time scale yields realizable spectra for
this case.

The paper is organized as follows. We begin with a brief summary of the equations
for the isotropic scalar spectrum in § 2. Section 3 then gives the results of the
EDQNM model, including evidence of unrealizable spectra. A modified model is
then developed from the Langevin equation analysis, and the model is shown to
be realizable; however, the transfer spectrum from the Langevin analysis does not
properly conserve the covariance spectrum until the inverse time scales from the
autocorrelation spectra are modified. Results from the original EDQNM, Langevin,
and modified Langevin model are given. We then derive the EDQNM model for the
covariance spectrum of scalars with uniform mean gradients in § 4 and show example
calculations of this model in § 5. Conclusions are given in § 6.

2. Isotropic scalar equations
The equation governing the advection and diffusion of a passive scalar with constant

physical properties in an incompressible flow field is given by

∂φα

∂t
+

∂

∂xi
(uiφα) = Dα

∂2φα

∂xi∂xi
, (2.1)

where φα is the local concentration of species α, ui is the Navier–Stokes velocity, and
Dα denotes the molecular diffusivity. As the turbulence and scalar fields are isotropic,
we can assume without loss of generality that there is zero mean flow and zero mean
scalar (Lesieur 1987; Hinze 1987). Thus, after a Reynolds decomposition, we can
simply replace the velocity and scalar by the fluctuating quantities, i.e. ui = u′i and
φα = φ′α.

It is convenient to express the equations for the scalar fluctuations (φ′α and φ′β) in
non-dimensional form using the integral length scale of the turbulence L (for xi), the
r.m.s. fluctuating velocity u′ (for ui), the large-eddy turnover time L/u′ (for t), and the
characteristic scalar fluctuation (εφL/u

′)1/2 (for φ′α and φ′β respectively), where εφ is
the steady-state scalar dissipation rate. The dimensionless equations are

∂φ′α
∂t

+
∂

∂xi
(u′iφ

′
α) =

1

Peα

∂2φ′α
∂xi∂xi

, (2.2)

∂φ′β
∂t

+
∂

∂xi
(u′iφ

′
β) =

1

Peβ

∂2φ′β
∂xi∂xi

, (2.3)

where Peα, the mass transfer Péclet number, is defined in terms of the Reynolds and
Schmidt numbers (ReL = u′L/ν and Scα = ν/Dα) as Peα = ReLScα. The definitions
of Peβ and Scβ follow by analogy. Also note that in order to maintain a reasonable
nomenclature, the same variables (e.g. xi, t, u

′
i, and φ′) have been used to represent

dimensionless and dimensional quantities. Since all subsequent equations will be
expressed in dimensionless form, except where noted, this practice should not cause
any confusion. Equations (2.2) and (2.3) represent the starting point for deriving the
EDQNM transport equations for the scalar autocorrelation and covariance spectra.



306 M. Ulitsky and L. R. Collins

2.1. Two-point correlations

The ultimate aim of the EDQNM analysis is to derive closed expressions for the
scalar autocorrelation and covariance spectra. These three scalar spectra will involve
the Fourier transform of the following two-point physical space correlations:

Rij(x1, x2) ≡ u′i(x1)u
′
j(x2), (2.4)

Bα(x1, x2) ≡ φ′α(x1)φ′α(x2), (2.5)

Bβ(x1, x2) ≡ φ′β(x1)φ
′
β(x2), (2.6)

Bαβ(x1, x2) ≡ φ′α(x1)φ
′
β(x2). (2.7)

For an arbitrary two-point correlation A(x1, x2), the definition of the Fourier transform
is given by

A(k, p) ≡
∫∫

A(x1, x2)e
−i(k·x1+p·x2) dx1 dx2, (2.8)

and its inverse,

A(x1, x2) ≡
∫∫

A(k, p)e+i(k·x1+p·x2) d̂k d̂p, (2.9)

in which d̂k ≡ dk/(2π)3 and d̂p ≡ dp/(2π)3.
For isotropic mirror-symmetric turbulence, the Reynolds stress tensor, Rij(k, p),

takes on a particularly simple form in Fourier space which has been discussed
extensively in the literature (Andre & Lesieur 1977; Orszag 1970; Leslie 1973; Tatsumi
1980; Lesieur 1987). Likewise, the scalar autocorrelation spectra, Bα(k, p) and Bβ(k, p),
have been discussed extensively in earlier work (Herring et al. 1982; Nakauchi et al.
1989; Lesieur 1987). Therefore, we state without proof the following results which
have been derived by appealing to tensor invariant arguments, isotropy, continuity,
and the reality condition (Batchelor 1953):

Rij(k, p) = δ̂(k + p)Pij(k)R(k), (2.10)

Bα(k, p) = 2δ̂(k + p)Bα(k), (2.11)

Bβ(k, p) = 2δ̂(k + p)Bβ(k), (2.12)

Bαβ(k, p) = 2δ̂(k + p)Bαβ(k), (2.13)

where

Pij(k) ≡ δij − kikj

k2
, (2.14)

R(k), Bα(k), Bβ(k), Bαβ(k) are scalar functions of the wavenumber k ≡ |k| only,

δ̂( ) is the three-dimensional Dirac delta function multiplied by (2π)3, and δij is the
Kronecker delta function. Note that we distinguish scalar functions (e.g. Bαβ(k)) from
the original vector functions (e.g. Bαβ(k, p)) by the arguments. In general, Bαβ(k) can
be a complex function of the wavenumber k (autocorrelations are by definition real
functions). However, homogeneity and the reality condition relate the transforms
of Bαβ(x1, x2) and Bαβ(x2, x1) as being complex conjugates of each other. As the
turbulence is defined to be mirror symmetric (i.e. no helicity), the function Bαβ(k) will
remain a real function for all time.

Although we now have relations for the scalar wavenumber spectra in terms of their
vector counterparts, it is actually more common to work with spherical integrals of
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the Fourier transformed two-point correlations given above. Thus an energy spectrum,
E(k), can be defined as

E(k) ≡ 1

(2π)3

∫∫
Rij(k, p) d̂p k2 dΩk =

k2R(k)

2π2
, (2.15)

where the solid angle dΩk ≡ sin θk dθk dφk and the limits on the spherical angles are
0 6 θk 6 π and 0 6 φk 6 2π. The scalar spectra can be similarly defined by

Ei
φ(k) ≡ 1

(2π)3

∫∫
Bi(k, p) d̂p k2 dΩk =

k2Bi(k)

π2
, (2.16)

where i refers to α, β, or αβ. The transport equation for Eα
φ(k) can be written in

general as [
∂

∂t
+

2

Peα
k2

]
Eα
φ(k, t) = Trα(k, t). (2.17)

In this equation, only the transfer spectrum, Trα(k, t), needs to be modelled, since the
diffusion terms are exact. The non-local wavenumber representation of the transfer
spectrum as given by EDQNM (Lesieur 1987) is

Trα(k, t) =

∫∫
∆

[
g1(k, p, q)E(p)Eα

φ(q, t)− g2(k, p, q)E(p)Eα
φ(k, t)

]
θ
(
αµ

pkq
M

)
dp dq,

(2.18)

where g1 and g2 are geometric factors, ∆ indicates that the integration only occurs
over that portion of the (p, q)-plane for which k, p, and q form a triad (triangle), and
θ is a time-dependent function which comes from the Markovianization of the triple
correlation. The inverse time scale, αµpkqM , is defined by

αµ
pkq
M = c1M µ

p + c2M(µk + µq) +
1

ReL
p2 +

1

Peα
k2 +

1

Peα
q2, (2.19)

where µk is calculated in the manner suggested by Pouquet et al. (1975) and takes the
form

µk =
1√
2π

√∫ k

0

k̃4R(k̃) dk̃. (2.20)

The time-dependent function, θ(γ), is given by

θ(γ) =
1− e−γt

γ
(2.21)

and the geometric factors, g1 and g2, by

g1(k, p, q) =
N2k

p3q
, (2.22)

g2(k, p, q) =
N2q

p3k
, (2.23)

where

N2 ≡ (k + p+ q)(k + p− q)(p+ q − k)(q + k − p)
4

. (2.24)

(See the Appendix for a clarification of the relationship between the present notation
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and the classical notation found in, for example, Lesieur 1987.) By replacing α in
(2.17)–(2.19) with β, one obtains the evolution equation for Eβφ.

The transport equation for Eαβ(k, t) can be written in an analogous fashion to that
for Eα(k, t) [

∂

∂t
+

(
1

Peα
+

1

Peβ

)
k2

]
E
αβ
φ (k, t) = Trαβ(k, t), (2.25)

where again, only the transfer spectrum needs to be modelled. As the derivation of
the EDQNM expression for Trαβ(k, t) follows as a straightforward extension of the
one for Trα(k, t) (which is discussed in detail in Lesieur 1987), we will simply list the
final result

Trαβ(k, t) =

∫∫
∆

[g1(k, p, q)E(p)Eαβ
φ (q, t)− g2(k, p, q)E(p)Eαβ

φ (k, t)]

×
[
θ
(
αβµ

pkq
M

)
+ θ

(
βαµ

pkq
M

)]
2

dp dq, (2.26)

where the inverse time scale αβµ
pkq
M is defined as

αβµ
pkq
M = c1M µ

p + c2M(µk + µq) +
1

ReL
p2 +

1

Peα
k2 +

1

Peβ
q2 (2.27)

(simply switch α and β to obtain βαµ
pkq
M ).

Conservation of each species implies that the transfer process is merely a redis-
tributive one, and thus the integral of the transfer spectrum over all wavenumbers
must be zero. In particular, conservation will be guaranteed by satisfying two criteria.
The first is that the same θ weighting factor must multiply the positive and negative
terms in the transfer spectrum. This is clearly evident in (2.18) and (2.26). The second
criterion is that the θ weighting factor must be symmetric under an interchange of k
and q. This guarantees that the integral over all wavenumbers, k, of the positive and
negative terms of the transfer function precisely cancel. Thus, the EDQNM model
conserves both the scalar autocorrelations and covariance.

There are two unknown constants that must be specified to complete the model.
Following the analysis of Andre & Lesieur (1977), the coefficients c1M and c2M are
assigned values of 0.36.

2.2. Forcing

As the equations for the scalar spectra contain no source terms, the standard practice
is to initialize the spectra to non-zero values and let them decay in either decaying
or stationary turbulence. However, in order to highlight the problems related to
realizability and conservation of transfer, it will be convenient to add an external
forcing term F(k) to the right-hand sides of (2.17) and (2.25). This forcing term will
allow us to initialize all three scalar spectra to zero at t = 0, and the spectra will build
up as result of the forcing and eventually reach a stationary state due to a balance
between the forcing and scalar dissipation. The mechanics of the forcing are quite
simple and the method used here is similar to the one described by Lesieur (1987) to
obtain a stationary energy spectrum. Note that the forcing term is assumed not to
affect the closure models for the transfer spectra (i.e. (2.18) and (2.26)).

To mimic the source terms in the scalar equations that arise in the presence of a
uniform mean scalar gradient (discussed in § 4 and § 5 in greater detail), the forcing is
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Figure 1. EDQNM stationary energy spectrum for ReL = 594. This spectrum was used for all
scalar runs and relevant length/time scale information concerning this spectrum can be found in
table 1. Note that the ordinate and abscissa of this and all future plots are dimensionless based on
the turbulence intensity, u′, and integral length scale, L.

designed to add scalar energy to the first two wavenumbers only. Non-local transfer,
moderated by scalar dissipation, will then fill in the rest of the scalar spectrum. We
choose F(1) = 0.12, F(2) = 0.50 and F(k) = 0 for all other wavenumbers (note
that here 1 and 2 refer to the first two wavenumbers, corresponding to k = 1.59
and k = 3.18 respectively). At steady state, this corresponds to a scalar dissipation
rate εφ = 1.0 for each of the scalars. It should be noted that each scalar is forced
identically so that φ′α and φ′β are initially perfectly correlated. However with time, the
scalars will decorrelate as a result of differences in their molecular diffusivities (i.e.
differential diffusion).

3. Isotropic scalar results and discussion
The transport equations for the scalar autocorrelation and covariance spectra

(Eα
φ(k, t), Eβ

φ(k, t), and Eαβ
φ (k, t)) combined with a stationary EDQNM energy spectrum

E(k) (see Lesieur 1987), have been solved numerically on a uniform grid with 128
wavenumbers and non-dimensional ∆k = 1.59 (i.e. the model is approximating a 2563

direct numerical simulation). For more detailed information on the numerical scheme
used to solve the coupled integro-differential equations, the interested reader should
refer to Herr et al. (1996).

There are three dimensionless parameters in the present study (ReL, Scα, and
Scβ), although no attempt here is made to vary the intensity or composition of the
stationary isotropic turbulence. That is, a single energy spectrum with ReL = 594 has
been utilized for all runs. This spectrum is shown in figure 1 and a summary of the
relevant single-point length/time scale statistics associated with the spectrum can be
found in table 1. Note that the energy spectrum and Fourier wavenumber have been
made dimensionless by using the variables u′ and L, where u′ is the r.m.s. fluctuating
velocity and L is the integral length scale of the turbulence. Adequate resolution of
the dissipation region (small length scales) is assured by adhering to the criterion
suggested by Eswaran & Pope (1988) that kmaxη > 1, where η is the Kolmogorov
length scale.
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Parameter Definition Value

u′ turbulence intensity 1.016
ε dissipation rate 0.25
ν kinematic viscosity 0.00272
L integral length scale 1.591
λ Taylor microscale 0.410
η Kolmogorov length scale 0.0168
Te eddy turnover time 1.566

ReL Reynolds number (integral scale) 594
Reλ Reynolds number (microscale) 153

Table 1. Turbulence parameters associated with the energy spectrum.

0.80

0.85

0.90

1.00

0 2

t

ρ ~

0.90

4 6 8

case (i)

case (ii)

Figure 2. Correlation coefficient vs. dimensionless time for Scα = 1 and Scβ = 0.1 (hereafter case
(i)) and Scα = 1 and Scβ = 0.01 (hereafter case (ii)). Notice that for both cases p̃ 6 1 for all time,
indicating the integral Cauchy–Schwartz condition is satisfied.

3.1. Realizability

Following Yeung & Pope (1993) and Yeung (1996), it is convenient to define a
coherency spectrum, which is a normalized covariance spectrum, as

ρ(k) ≡ E
αβ
φ (k)√

Eα
φ(k)Eβ

φ(k)
. (3.1)

The Cauchy–Schwartz condition implies that ρ(k) 6 1 for all k. Before considering
ρ(k) however, it will be insightful to consider the time history of the correlation
coefficient, a single-point statistic denoted by ρ̃ and defined as

ρ̃ ≡ φ′αφ′β√
φ′αφ′α φ′βφ′β

, (3.2)

where the overbars denote total mean quantities (e.g. φ′αφ′α =
∫ kmax

0
Eα
φ(k) dk, and similar

equations apply for the other two mean quantities in (3.2)). The Cauchy–Schwartz
condition also implies that ρ̃(t) 6 1 for all time.

Figure 2 shows the correlation coefficient as a function of dimensionless time for
the case where Scα = 1 and Scβ = 0.1 and also for Scα = 1 and Scβ = 0.01. These
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Figure 3. Evolution of the coherency spectrum for (a) case (i) and (b) case (ii). Notice that ρ(k) > 1
over a range of wavenumbers in violation of the Cauchy–Schwartz inequality. The violation occurs
initially at high wavenumbers and moves to lower wavenumbers with increasing time, although it
is still evident even after the spectrum reaches steady state.

two sets of Schmidt numbers will be referred to so frequently that it will be useful to
denote (Scα = 1, Scβ = 0.1) by (i) and (Scα = 1, Scβ = 0.01) by (ii). The coefficient
starts near unity because the two scalars have identical initial conditions and are
forced identically, and are therefore nearly perfectly correlated at short times. With
increasing time, the effects of differential diffusion are felt, causing the correlation
coefficient to decrease. Notice that the correlation coefficient is less than unity for
all time and is therefore realizable. Thus, although we will show that the coherency
spectrum, ρ(k), violates the Cauchy–Schwartz inequality over a range of wavenumbers,
integrated quantities such as the correlation coefficient remain realizable for all time.
From the figure, it is clear that φ′α and φ′β for case (ii) not only decorrelate much
more rapidly at short times, as is evident from the steeper slope at t = 0, but also to
a greater extent than is observed in case (i).

Figure 3 shows the evolution of the coherency spectrum for cases (i) and (ii). Here
it is apparent that ρ(k) exceeds unity, violating the Cauchy–Schwartz inequality over
a range of wavenumbers. Notice that the violation at short times occurs at high
wavenumbers, but as time increases the range of wavenumbers in violation of the
Cauchy–Schwartz inequality moves toward lower wavenumbers (i.e. larger scales).
It is worth noting that a careful examination of the numerical algorithm used to
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solve the integro-differential equations shows that the unrealizable spectra are not a
numerical artifact, but result from the EDQNM closure. The result is surprising since
the present model is a straightforward extension (with no additional assumptions) of
the earlier models (Lesieur 1987). Apparently, requiring that ρ(k) 6 1 provides a more
stringent realizability test of the EDQNM procedure than simple positive definiteness
of the autocorrelation spectra. Because of the complexity of the integral responsible
for scalar transfer, it is difficult to identify the cause of the partially unrealizable
solution. To assist in this regard, we shall develop a spectral equation based on a
stochastic model of scalar transport. The advantage of this approach is that the
existence of an underlying stochastic model guarantees that the model is realizable.

3.2. Langevin model

Under certain circumstances, it is possible to prove that the EDQNM spectral model
is related to a Langevin equation. For example, the EDQNM closure for the energy
equation was shown by Orszag (1973) to be the exact solution for an ensemble of
velocities that each obey the following Langevin equation:

∂ûi(k, t)

∂t
= −γu(k, t)ûi(k, t) + qi(k, t), (3.3)

where ûi(k, t) is a mode of the velocity field for a specific member of the ensemble,
γu(k, t) is a non-stochastic damping function and qi(k, t) is a stochastic forcing function.
For consistency with the EDQNM model, γu(k, t) and qi(k, t) are defined as

γu(k, t) = Re−1
L k

2 +
1

2

∫∫
∆

dp dq
k

pq
θ(µkpqR )

p

k
(xy + z3)E(q, t), (3.4)

qi(k, t) = −iPimn(k)

∫
a(t)

√
θ(µkpqR )v̂m(p, t)ŵn(q, t) d̂p, (3.5)

where homogeneity requires that k + p + q = 0, a(t) is a Gaussian random variable
that satisfies a(t) = 0 and a(t)a(t′) = δ(t − t′), v̂i(p, t) and ŵi(q, t) are statistically
independent random Gaussian velocity fields that are chosen to be consistent with
the energy spectrum E(k, t), µkpqR is the inverse time scale for the energy spectrum
(see (4.16) for the definition) and x, y and z are the cosines of the angles between the
wavevectors of the (k, p, q) triad defined as

x ≡ p · q
pq

=
k2 − p2 − q2

2pq
, (3.6)

y ≡ k · q
kq

=
p2 − k2 − q2

2kq
, (3.7)

z ≡ k · p
kp

=
q2 − k2 − p2

2kp
. (3.8)

An analogous Langevin equation for the scalar field can be derived by extending the
approach taken by Orszag. To simplify the nomenclature, we represent the two scalar

spectra in terms of a vector as follows: Φ(k, t) ≡ (φ̂α(k, t), φ̂β(k, t)). The Langevin
equation for Φ(k, t) takes the general form

∂Φ(k, t)

∂t
+ A(k, t) · Φ(k, t) = r(k, t), (3.9)
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where A(k, t) is a second-order coefficient (i.e. non-stochastic) matrix, which we will
define shortly and r(k, t) is a random forcing vector defined as

r(k, t) = −ikm

∫
a′(t)v̂m(p, t)C(q, t) ·Ψ (q, t) dp. (3.10)

C(q, t) is another coefficient matrix, Ψ (q, t) is a vector consisting of two independent
random Gaussian variables with zero mean and unit variance, and a′(t) is another
random Gaussian variable with properties identical to a(t). Multiplying (3.9) by
Φ(k, t) – obtained by formal integration – and recombining the result yields a closed
equation for the scalar covariance matrix, defined as

Eφ(k, t) ≡
(
Eα
φ(k, t) E

αβ
φ (k, t)

E
αβ
φ (k, t) E

β
φ(k, t)

)
. (3.11)

The result is

∂Eφ(k, t)

∂t
+ A(k, t) · Eφ(k, t) + [A(k, t) · Eφ(k, t)]T =

∫∫
∆

g1(k, p, q)E(p)D(q, t) dp dq,

(3.12)

where D(q, t) ≡ C(q, t) · CT (q, t). The superscript T refers to the transpose of the
matrix. To be consistent with the EDQNM model for the scalar autocorrelation
spectra, the matrix A(k, t) must have the following form:

A(k, t) ≡
(
γα(k, t) 0

0 γβ(k, t)

)
, (3.13)

where

γα(k, t) = Pe−1
α + 1

2

∫∫
∆

dp dq g2(k, p, q)θ(αµpkqM )E(p, t) (3.14)

and γβ(k, t) follows by analogy. Likewise, D(q, t) takes the form

D(q, t) ≡
(
θ(αµpkqM )Eα

φ(q, t) θ12E
αβ
φ (q, t)

θ12E
αβ
φ (q, t) θ(βµpkqM )Eβ

φ(q, t)

)
, (3.15)

where θ12 is an unspecified constant. At this stage, the definitions given in (3.13)
and (3.15) ensure that the equations for Eα(k, t) and Eβ(k, t) represented in (3.12) are
consistent with the EDQNM model. The equation for Eαβ(k, t) will depend on how
the coefficient θ12 is chosen.

Constructing the Langevin model requires that we solve for the C(q, t) matrix.
Using the Cholesky decomposition (Golub & Loan 1983), we can construct a lower-
triangular matrix C(q, t); however D(q, t) must be positive definite (i.e. Det (D) > 0)
to make this possible. This implies that the following constraint must hold:

θ(αµpkqM )θ(βµpkqM )Eα
φ(q, t)Eβ

φ(q, t)− [θ12E
αβ
φ (q, t)]2 > 0. (3.16)

If we assume that the Schwartz equality is satisfied (i.e. Eαβ
φ (q, t) =

√
Eα
φ(q, t)Eβ

φ(q, t)),

then the worst case becomes

θ12 6
√
θ(αµpkqM )θ(βµpkqM ), (3.17)
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Figure 4. Coherency spectrum for the covariance spectrum derived using the Langevin model for the
transfer. The result is realizable for all time; however, closer examination shows that the covariance

spectrum is not properly conserved by the transfer function TrαβL (k), i.e.
∫ ∞

0
Tr

αβ
L (k) dk 6= 0.

(i.e. a sufficient condition for the existence of the Langevin model is that θ12 is less
than the geometric mean of the θ-values for each autocorrelation spectrum). If we
satisfy the equality shown in (3.17), the equation for the transfer spectrum, TrαβL (k, t),
becomes

Tr
αβ
L (k, t) =

∫∫
∆

[
g1(k, p, q)

√
θ(αµpkqM )θ(βµpkqM )E(p)Eαβ

φ (q, t)

−g2(k, p, q) 1
2
[θ(αµpkqM ) + θ(βµpkqM )]E(p)Eαβ

φ (k, t)
]

dp dq. (3.18)

The major difference lies in the definitions of the θ-values, which are now defined in
terms of a geometric and arithmetic mean of the autocorrelation values, instead of the
mixed coefficient that arises from the EDQNM procedure. As a result, the Langevin
model yields an asymmetric transfer of the scalar covariance; that is, transfer into the
wavenumber k is controlled by the geometric mean of the autocorrelation θ-values,
whereas transfer out of the wavenumber k is controlled by the arithmetic mean of
the same.

Figure 4 shows the evolution of the coherency spectrum for cases (i) and (ii) using
Tr

αβ
L (k) defined in (3.18). It is apparent that the modified transfer function repairs
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Figure 5. Coherency spectrum for the EDQNM model with the modified coefficients for (a) case
(i) and (b) case (ii). The result is realizable and the transfer term properly conserves the scalar
covariance.

the problem with realizability found for the standard EDQNM model. Indeed, the
resulting spectra are realizable for all time. However, one important problem with
(3.18) is that it no longer conserves the scalar covariance (i.e.

∫ ∞
0
Tr

αβ
L (k) dk 6= 0). This

unphysical result is directly related to the break in symmetry between transfer into
and out of each wavenumber. The use of different θ-functions for the two parts of
Tr

αβ
L (k, t) in (3.18) destroys the overall conservation of the scalar covariance. However,

under the circumstance that the arithmetic and geometric means of the θ-functions
are equal, then both conservation and realizability would be obtained. This condition
can occur if and only if the autocorrelation inverse time scales are defined to be
independent of the scalar molecular diffusivities. This assumption for the coefficients
yields a model that is both conservative and realizable. To accomplish this, we replace
the inverse time scales by

αµ
pkq
M = βµ

pkq
M = αβµ

pkq
M = c1Mµ

p + c2M(µk + µq) +
(k2 + p2 + q2)

ReL
≡ µpkqM , (3.19)

in which the explicit dependence on the scalar molecular diffusivities (here appearing
in the form of Peα and Peβ) is replaced by the kinematic viscosity (here ReL). The
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Figure 6. Comparison of the steady-state coherency spectra for the original EDQNM model, the
Langevin model, and the EDQNM model with modified coefficients for (a) case (i) and (b) case (ii).

use of these coefficients yields the following modified transfer function:

Tr
αβ
M (k, t) =

∫∫
∆

[g1(k, p, q)E(p)Eαβ
φ (q, t)− g2(k, p, q)E(p)Eαβ

φ (k, t)]θ(µpkqM )dp dq.

(3.20)

It should be noted that the choice is not unique; however, it is believed to be the
best choice because it accomplishes the objective with the least modification of the
coefficients.

Figure 5 shows the evolution of the coherency spectrum for the EDQNM model
with the revised inverse time scales. Once again, the coherency spectrum remains below
unity for all time and wavenumbers. A comparison of the steady-state results from the
original EDQNM model, the Langevin model and the newly proposed model using
(3.19) for cases (i) and (ii) is shown in figure 6. It is apparent that this modest change
has a significant impact on the coherency spectrum at all wavenumbers. As noted
earlier, the new model can be considered a physical model, as it satisfies the Cauchy–
Schwartz condition and the transfer term properly conserves the scalar covariance;
however, its accuracy must be assessed by comparison with either experimental data
or numerical simulations. This will be the topic of a future paper.
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3.3. Physical explanation

In hindsight, it is possible to explain the results presented above without invoking the
Langevin analysis. Imagine that scalars α and β are being convected by turbulence, and
at some instant in time t, φ′α = φ′β over some portion of the spectrum, corresponding
to the Cauchy–Schwartz equality being satisfied. By definition, the triple correlations
leading to the respective transfer terms over that same range of the spectrum are
identical and so at that instant one expects Trα(k, t) = Trβ(k, t) = Trαβ(k, t), when
Eα(k, t) = Eβ(k, t) = Eαβ(k, t). However, it is readily apparent from (2.18) and (2.26)
and the definitions of the inverse time scales ((2.19) and (2.27)) that the EDQNM
model will not produce identical transfer terms under these circumstances because
the models for the three transfer functions are explicit functions of the respective
scalar molecular diffusivities (through the definitions of the θ-functions). Notice that
this explicit dependence is eliminated in the modified definition of the inverse time
scale given in (3.19), and so the modified model predicts identical transfer functions
under these circumstances.

Thus, we conjecture that a sufficient condition for realizability is that the auto-
and cross-correlation transfer functions should reduce to identical functions of k
whenever the three scalar spectra are equal. There is additional evidence to support
this conjecture. For example, the scalar molecular diffusivities (in the dimensionless
equations, the Péclet numbers) are multiplied by factors k2, p2 and q2 and thus one
expects their effect to be greatest at high wavenumbers. This is consistent with the
observation in figure 3 that the coherency spectrum is initially unrealizable at high
wavenumbers.

The conjecture is somewhat surprising because it suggests that the terms arising
from the exact linear diffusion terms in the original differential equation for the
triple correlations are causing the realizability problem. However, the form they
take in the final expression for the transfer functions is not exact because of the
Markovian approximation. It is at this step that the explicit dependence of the transfer
functions on the molecular diffusivities is introduced. Clearly, relaxing the Markovian
approximation by integrating a coupled system of ODEs for the θ-functions would
relieve this problem; however, such a calculation is extremely numerically intensive,
as the number of θ-functions to be integrated scales like N3 for N grid points.
Moreover, relaxing the Markovian approximation jeopardizes the realizability of the
scalar autocorrelation spectra (i.e. positive definitness). Thus, the simplest and most
robust solution to the problem may be to modify the inverse time scales of the
Markovianized model, as suggested here.

4. Equations for scalars with mean gradients
The equation governing the advection and diffusion of a passive scalar with constant

physical properties is given in (2.1). In this section, we are concerned with the mixing
of passive scalars with a uniform mean gradient in a single direction. The Reynolds
decomposition of the scalar concentration into a mean and fluctuating component
now becomes φα = φ′α + Γαx3, where Γα is the magnitude of the mean gradient of
species α and its direction is taken to be x3 without loss of generality. As a result of
the mean gradient, all correlations involving the scalar will be axisymmetric in the
(x1, x2)-plane instead of being isotropic.

The governing equation for the scalars can be found by imposing the mean gradient
on (2.1). If we then non-dimensionalize the resulting equation using the integral scale
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L (for xi), the r.m.s. fluctuating velocity u′ (for u′i), the large-eddy turnover time L/u′,
ΓαL (for φ′α) and ΓβL (for φ′β), we obtain the following:

∂φ′α
∂t

+
∂

∂xi
(u′iφ

′
α) + u′3 =

1

Peα

∂2φ′α
∂xi∂xi

, (4.1)

∂φ′β
∂t

+
∂

∂xi
(u′iφ

′
β) + u′3 =

1

Peβ

∂2φ′β
∂xi∂xi

, (4.2)

where Peα and Peβ retain their definitions from § 2. As (4.1) and (4.2) are linear
with respect to φ′, the magnitude of the mean gradients effectively scales out of
the problem. Once again, the same variables are used to represent the dimensionless
variables since all future equations will be written in dimensionless form. Equations
(4.1) and (4.2) represent the starting point for deriving transport equations for all of
the two- and three-point correlations that follow.

4.1. Two-point correlations

In addition to the two-point correlations identified in (2.4)–(2.7) for the isotropic
scalar study, the covariance spectrum in the presence of a uniform mean gradient will
further depend upon the Fourier transform of the following two-point correlations:

Qαi (x1, x2) ≡ u′i(x1)φ′α(x2), (4.3)

Q
β
i (x1, x2) ≡ u′i(x1)φ

′
β(x2). (4.4)

Thus, in addition to the equation for the scalar covariance, a transport equation for
Qαi (x1, x2) (and by analogy Q

β
i (x1, x2)) must be derived. Moreover, the equation for

the scalar covariance will be substantially modified to account for the reduction in
symmetry from isotropic to axisymmetric and to include additional transfer terms. It
should be noted that the derivations in this part of the study closely parallel those
performed by Herr et al. (1996), in which the EDQNM theory was applied to a single
passive scalar with a uniform mean gradient.

The exact transport equation for Bαβ(x1, x2), the scalar covariance, takes the fol-
lowing form:[

∂

∂t
− 1

Peα
∇2

1 − 1

Peβ
∇2

2

]
Bαβ(x1, x2)

= − ∂

∂x1i

M
αβ
i (x1, x1, x2)− ∂

∂x2i

M
αβ
i (x2, x1, x2)︸ ︷︷ ︸

inertial transfer

−Qβ3 (x1, x2)− Qα3(x2, x1)︸ ︷︷ ︸
source

, (4.5)

where Mαβ
i (x1, x2, x3) ≡ u′i(x1)φ′α(x2)φ

′
β(x3), and ∇2

1 and ∇2
2 are the Laplacian operators

with respect to x1 and x2. Once again, the inertial transfer terms are at higher order
and must be modelled via the EDQNM formalism. Before proceeding to the three-
point correlations, however, it is necessary to derive transport equations for Qαi (x1, x2)

and Qβi (x1, x2), which constitute the source term for Bαβ(x1, x2) in (4.5).

The exact transport equation for Qαi (x1, x2) the scalar–velocity cross-correlation is
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given by[
∂

∂t
− 1

ReL
∇2

1 − 1

Peα
∇2

2

]
Qαi (x1, x2)

= −1

2
P 1
iabT

α
ab(x1, x1, x2)− ∂

∂x2a

T α
ia(x1, x2, x2)︸ ︷︷ ︸

inertial transfer

−Ri3(x1, x2)︸ ︷︷ ︸
source

, (4.6)

where Tα
ia(x1, x2, x3) ≡ u′i(x1)u′a(x2)φ′α(x3). The projection operator Piab is symmetric in

the last two indices and is defined as (the superscript 1 implies that all derivatives
occur at x1)

Piab = δia
∂

∂xb
+ δib

∂

∂xa
+

2

∇2

∂3

∂xixaxb
. (4.7)

The source term in (4.6) is exact (as was the case for (4.5)), but the triple correlations
will have to be modelled.

From the definition of Qαi (k, p) (see (2.8)) it can be shown through vector invariant
arguments that tensorial constraints, continuity, and the reality condition will impose
the following form (Batchelor 1946; Chandrasekhar 1950):

Qαi (k, p) = δ̂(k + p)Pi3(k)Qα(k, µ), (4.8)

where µ is the cosine of the angle between k and the mean gradient vector, Qα(k, µ) is a
real function of the wavenumber k and angle µ (see (2.14) for the definition of Pij(k)).
Ulitsky & Collins (1997) showed in general that the scalar–velocity correlation can
have a second component that is proportional to εi3jkj/k, where εijk is the alternating
unit tensor. However, under the assumption of mirror-symmetric isotropic turbulence,
this term will be identically zero.

Although the velocity field is isotropic, the presence of the uniform mean gradient
makes all correlations involving the scalar axisymmetric. From a spectral standpoint,
this suggests that the energy spectrum will only be a function of the wavenumber k,
but that all scalar spectra will be functions not only of the wavenumber k, but also
of the angle µ. In a later section, a discussion will be given on separating the angle
dependence from the wavenumber dependence.

Taking the Fourier transform of (4.6) and noting that Pi3(k)Pi3(k) = (1 − µ2), we
obtain the following equation for Qα(k, µ):[

∂

∂t
+

(
1

ReL
+

1

Peα

)
k2

]
(1− µ2)Qα(k, µ)

= −kjPi3(k)

∫∫
Tα
ij(k, p, q) d̂p d̂q − 1

2
P3ij(k)

∫∫
Tα
ij(q, p, k) d̂p d̂q︸ ︷︷ ︸

inertial transfer

−(1− µ2)R(k)︸ ︷︷ ︸
source

. (4.9)

The anisotropic scalar spectrum now takes the following form (Batchelor 1946;
Chandrasekhar 1950):

Bαβ(k, p) ≡ 2δ̂(k + p)Bαβ(k, µ), (4.10)
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where in general, Bαβ(k, µ) will be a complex function of the wavenumber k and
angle µ; however, in accordance with the argument made earlier for Qαi (k, p), the
imaginary component will be identically zero as a result of the initial conditions and
the assumption of mirror-symmetric turbulence. With this definition, the transport
equation for Bαβ(k, µ) becomes[

∂

∂t
+

(
1

Peα
+

1

Peβ

)
k2

]
Bαβ(k, µ)

= −ki
∫∫

1
2
[Mαβ

i (p, k, q) +M
βα
i (p, k, q)] d̂p d̂q︸ ︷︷ ︸

inertial transfer

− 1
2
(1− µ2)[Qα(k, µ) + Qβ(k, µ)]︸ ︷︷ ︸

source

. (4.11)

Note that the triple correlations appearing in (4.9) and (4.11) are purely imaginary;
however to simplify the nomenclature, it will be understood that Tα

ij and Mαβ
i actually

refer to the imaginary parts of Tα
ij and Mαβ

i respectively (the real parts of Tα
ij and Mαβ

i

are identically zero). If the scalar diffusivities were equal, the resulting symmetry of the
scalar autocorrelation combined with homogeneity reduces (4.11) to the single-scalar
equation (Herr et al. 1996)[

∂

∂t
+

2

Peα
k2

]
Bα(k, µ) = −ki

∫∫
Mα

i (p, k, q) d̂p d̂q︸ ︷︷ ︸
inertial transfer

−(1− µ2)Qα(k, µ)︸ ︷︷ ︸
source

. (4.12)

4.2. Three-point correlations

From (4.9) and (4.11), it is clear that we must derive expressions for Tα
ij(k, p, q) and

M
αβ
i (k, p, q) to achieve a closed set of equations. The quasi-normal assumption (Chou

1940; Millionshtchikov 1941) enters at this step, since equations for the temporal
evolution of the third-order moments will contain terms involving unknown fourth-
order moments. Through the quasi-normal approximation, it is postulated that the
joint distributions of all fourth-order moments are nearly Gaussian, and thus, the
unknown moments can be expressed as superpositions of products of second-order
moments. For example, if a′i(x1), b

′
j(x2), c

′
k(x3), and d′l(x4) are Gaussian random

variables with zero mean, then

a′i(x1)b
′
j(x2)c

′
k(x3)d

′
l(x4) = a′i(x1)b

′
j(x2) c

′
k(x3)d

′
l(x4) + a′i(x1)c

′
k(x3) b

′
j(x2)d

′
l(x4)

+ a′i(x1)d
′
l(x4) b

′
j(x2)c

′
k(x3). (4.13)

Although the distributions of the actual fourth-order moments are not identically
Gaussian, we can still use (4.13) if we recognize that the equality now becomes an
approximation. By applying (4.13) and homogeneity to all the fourth-order moments
that appear in the transport equations for Tα

ij(k, p, q) and Mαβ
i (k, p, q), we can obtain

time-dependent equations for the third-order moments. If we then use eddy damping
to control the fourth-order cumulants and the Markovian approximation to simplify
the time history of the third-order moments (Lesieur 1987), then the following closed
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Rij3(k, p, q) {−Piab(k)Pja(p)Pb3(q)R(p)R(q)− Pjab(p)Pia(k)Pb3(q)R(k)R(q)

−P3ab(q)Pia(k)Pjb(p)R(k)R(p)} δ̂(k + p + q)

Tα
ij(k, p, q) {−Pjab(p)Pia(k)Pb3(q)Qα(q, µ′′)R(k)− Piab(k)Paj(p)Pb3(q)Qα(q, µ′′)R(p)

−qnPin(k)Pj3(p)Qα(p, µ′)R(k)− qnPjn(p)Pi3(k)Qα(k, µ)R(p)} δ̂(k + p + q)

Tβ
ij(k, p, q) {−Pjab(p)Pia(k)Pb3(q)Qβ(q, µ′′)R(k)− Piab(k)Paj(p)Pb3(q)Qβ(q, µ′′)R(p)

−qnPin(k)Pj3(p)Qβ(p, µ′)R(k)− qnPjn(p)Pi3(k)Qβ(k, µ)R(p)} δ̂(k + p + q)

Mαβ
i (k, p, q) {−2pjPij(k)R(k)Bαβ(q, µ′′)− 2qjPij(k)R(k)Bαβ(p, µ′)

−pjPi3(k)Pj3(q)Qα(k, µ)Qβ(q, µ′′)− qjPi3(k)Pj3(p)Qβ(k, µ)Qα(p, µ′)
−Piab(k)Pa3(p)Pb3(q)Qα(p, µ′)Qβ(q, µ′′)} δ̂(k + p + q)

Table 2. Explicit representation of triple correlations.

expressions can be derived for Tα
ij(k, p, q) and Mαβ

i (k, p, q):

Tα
ij(k, p, q) =

[
Tα

ij(k, p, q)− Rij3(k, p, q)

µ
kpq
R

]
θ(αµkpqT ), (4.14)

M
αβ
i (k, p, q) =

[
Ri33(k, p, q)

µ
kpq
R

−Tβ
i3(k, p, q)

]
ξ(βµkpqT ,αβµ

kpq
M )

+

[
Ri33(k, q, p)

µ
kqp
R

−Tα
i3(k, q, p)

]
ξ(αµkqpT ,αβµ

kpq
M )

+Mαβ
i (k, p, q)θ(αβµkpqM ). (4.15)

The expressions for Rij3(k, p, q), Tα
ij(k, p, q), Tβ

ij(k, p, q), and Mαβ
i (k, p, q), can be

found in table 2. The new eddy-damping terms are defined as

µ
kpq
R = cR(µk + µp + µq) +

1

ReL
(k2 + p2 + q2),

αµ
kpq
T = c1T (µk + µp) + c2T µ

q +
1

ReL
(k2 + p2) +

1

Peα
q2,

βµ
kpq
T = c1T (µk + µp) + c2T µ

q +
1

ReL
(k2 + p2) +

1

Peβ
q2;


(4.16)

αβµ
kpq
M , µk and θ(γ) are defined in (2.19)–(2.21). The new time-dependent coefficient,

ξ(γ, δ), is given by

ξ(γ, δ) =


1

γ

[
1− e−δt

δ
+

e−γt − e−δt

γ − δ
]
, γ 6= δ

1

γ

[
1− e−γt

γ
− te−γt

]
, γ = δ.

(4.17)

There are three additional unknown constants that must be specified to complete
the model. The constant cR is usually assigned the value 0.36 to ensure that the
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energy spectrum obeys the classical Kolmogorov scaling argument in the limit of
infinite Reynolds number (Andre & Lesieur 1977). The other two new coefficients,
c1T and c2T , are empirical constants associated with scalar transfer. They cannot
be determined theoretically, as Tα

ij(k, p, q) is not conservative, and thus cannot be
constrained by some overall conservation principle. Following Herr et al. (1996), the
constants c1T and c2T were given values of 0 and 1.0 respectively. By using these
values for c1T and c2T , we can achieve consistency with their EDQNM model for the
limit of equal molecular diffusivities. We note that c1M and c2M were again assigned
the value 0.36 to ensure consistency of the proposed model with the earlier isotropic
model in the limit of a vanishingly small scalar gradient.

Substituting the third-order moments into (4.9) and (4.11) yields closed expressions
for Qα(k, µ) and Bαβ(k, µ). The only remaining problem is converting the implicit
angle dependence into an explicit one. The method used by Herring (1974) involves
a Legendre series expansion for the second-order moments, where the argument for
the Legendre polynomial is the cosine of the angle between the mean gradient and
k, p, or q (i.e. µ, µ′, or µ′′ respectively). For example, the expansions for Bi(k, µ) and
Qj(k, µ) take the following form (where i refers to α, β, or αβ, and j refers to α or β):

Bi(k, µ) =

∞∑
n=0

Bi2n(k)L2n(µ),

Qj(k, µ) =

∞∑
n=0

Q
j
2n(k)L2n(µ).

Similar expressions can be written for Bi(p, µ′), Bi(q, µ′′), Qj(p, µ′), and Qj(q, µ′′). Note
that because Bi(k, µ) and Qj(k, µ) are even functions of µ, only the even terms of the
series are needed. Also, the first term in each infinite series represents the isotropic
contribution to the correlation, while the higher-order terms account for the anisotropy
due to the presence of the uniform mean gradients. Equations for the component
spectra, Bi2n(k) and Q

j
2n(k) can be derived from their respective transport equations

by taking advantage of the orthogonality properties of the Legendre polynomials; to
derive the transport equation for a specific order, multiply the appropriate governing
equation ((4.9) or (4.11)) by the Legendre polynomial of that order and integrate over
dµ from −1 to 1.

It was shown in Herr et al. (1996) that if all correlations involving the scalar
field are initialized to zero at t = 0, then the scalar–velocity cross-correlation will
only involve the first term in the infinite series, while the scalar autocorrelation and
covariance spectra will require the first two terms in the series. All higher-order terms
will be identically zero for all time. As this study uses an identical initialization, the
same arguments apply and we find that the separation of the wavenumber from the
angle dependence takes the simple form of

Bi(k, µ) = L0(µ)Bi0(k) + L2(µ)Bi2(k),

Qj(k, µ) = L0(µ)Qj0(k).

}
(4.18)

Note that L0(µ) = 1 and L2(µ) = (3µ2 − 1)/2.
Upon examination of (4.9) and (4.11), one will find that all the convolution integrals

are of the form ∫∫
δ̂(k + p + q)F(k, p, q, µ, µ′, µ′′) d̂p d̂q, (4.19)
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Figure 7. Coordinate system for evaluating the convolution integral: (e1, e2, e3) is the natural
coordinate system based on the direction of the mean gradient, while (e′1, e′2, e′3) is chosen so that
e′3 is aligned with the k vector. The latter coordinate system is used to evaluate the convolution
integrals because it simplifies the integrands.

and thus will vanish unless k, p, and q form a triangle (triad). It can be shown that
by switching to a coordinate system with one axis aligned along the k vector of a
triad (instead of along the mean gradient direction) µ′ and µ′′ can be expressed in
terms of µ, the cosines of angles between the vectors of the triad, and the spherical
angle φq(0 6 φq 6 2π) (Nakauchi 1984)

µ ≡ k3

k
,

µ′ ≡ p3

p
= −

√
1− µ2N sinφq

pk
+ zµ,

µ′′ ≡ q3

q
=

√
1− µ2N sinφq

qk
+ yµ.


(4.20)

See figure 7 for a geometric sketch of the transformation. By using the law of cosines,
the angles between the vectors of the triad can be expressed in terms of k, p, and q,
and the vector integration over p and q can be replaced by a scalar integration over
p and q as follows:

1

(2π)3

∫∫
∆

[∫ 2π

0

F̂(k, p, q, µ, φq)
pq

k
dφq

]
dp dq. (4.21)

Here, the integration over φq is done analytically, while the integration over p and q
is done numerically.

5. Results and discussion for scalars with mean gradients

The closed equations for Qα0(k), Q
β
0 (k), Bαβ0 (k), Bα0(k), Bβ0 (k), Bαβ2 (k), Bα2(k) and Bβ2 (k)

are solved on a uniform grid with 128 wavenumbers and non-dimensional ∆k = 1.59.
The forced energy spectrum is the same as was used in the isotropic scalar study, as
are the values of the Schmidt numbers (i.e. case (i) corresponds to Scα = 1, Scβ = 0.1;
case (ii) corresponds to Scα = 1, Scβ = 0.01). The definitions of the scalar spectra are
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Figure 8. Evolution of the coherency spectrum for (a) case (i) and (b) case (ii). Once again, ρ(k) > 1
over a range of wavenumbers in violation of the Cauchy–Schwartz inequality. The violation occurs
initially at high wavenumbers and moves to lower wavenumbers with increasing time.

now

Ei
φ(k) =

1

(2π)3

∫∫
Bi(k, p) d̂pk2 dΩk =

1

2π2

∫ 1

−1

k2Bi(k, µ) dµ =
k2Bi0(k)

π2
, (5.1)

where the superscript i refers to α, β or αβ.

5.1. Realizability

Figure 8 shows the evolution of the coherency spectrum (see (3.1) for definition) for
cases (i) and (ii). Once again, it is apparent that ρ(k) exceeds unity over a range of
wavenumbers. The phenomenon is similar to the one observed for the isotropic scalar;
however, because of the complexity of the transfer terms for the axisymmetric scalar
field it is now much more difficult to identify the origin of the partially unrealizable
solution.

In the case of the isotropic scalar, it was possible to make progress by considering
the Langevin equation for the scalar autocorrelation spectrum. However, such a
representation for a scalar with a uniform mean gradient that is consistent with both
the scalar–velocity (4.9) and scalar–scalar (4.11) equations is not as easily constructed.
The EDQNM closure for Tα

ij(k, p, q) produces interactions of the form RQα and RR

while the closure for Mαβ
i (k, p, q) produces interactions of the form RBαβ , QαQβ , RQα,
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Figure 9. Evolution of the coherency spectrum for (a) case (i) and (b) case (ii) using the EDQNM
model with the modified coefficients. The result is realizable and the transfer term properly conserves
the scalar covariance.

RQβ and RR. Given the velocity representation shown in (3.3), the equation for the
scalar field must generate all of the interactions found in (4.9) and (4.11). The number
and complexity of the interactions that must be generated by the scalar Langevin
equation makes it prohibitively difficult to determine the appropriate coefficients for
each term. Thus, the analysis for the scalar with a uniform mean gradient must be
done without the benefit of the Langevin equation.

In the absence of a Langevin equation, we will utilize the conjecture discussed
in § 3.3. The idea is to force the autocorrelation and covariance transfer spectra to
be equal when the scalar fluctuations are perfectly correlated (i.e. when Eα(k, t) =
Eβ(k, t) = Eαβ(k, t) and Qα(k, t) = Qβ(k, t)). To accomplish this, the inverse time scales
αµ

kpq
T , βµkpqT , and αβµ

kpq
M again must be independent of the scalar molecular diffusivities

(or Péclet numbers Peα and Peβ). One way to accomplish this is simply to replace
Peα and Peβ in these expressions by ReL throughout.

Figure 9 shows the evolution of the covariance spectra for cases (i) and (ii)
after substituting the modified eddy-damping coefficients. Notice that all spectra
are realizable for all time. Despite the lack of an underlying Langevin model, the
previously derived fix for the isotropic spectrum appears to work in the more general
case of an anisotropic spectrum. This says nothing about the accuracy of the result,
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since realizability is only one criterion for a good model. We believe the model will
continue to be accurate over the energy-containing eddies and the inertial range, since
presumably the effect of molecular properties is small. At very large wavenumbers,
there may be some effect of the modified inverse time scales. Finally, we emphasize
that eliminating the diffusivity dependence from the inverse time scales does not
eliminate the effect of the molecular diffusivity on the scalar spectra themselves. The
latter effect (presumably the major effect) is explicitly accounted for by the diffusive
terms in the scalar equations. Furthermore, as the triple correlations depend on the
scalar spectra, they retain an implicit dependence on the scalar molecular diffusivities.

6. Conclusions
The EDQNM theory has been used to derive closed transport equations for the

scalar covariance spectrum advected by isotropic turbulence. Two different cases
were considered. In the first example, scalars φα and φβ were generated by an
isotropic forcing that was perfectly correlated. Thereafter, differences in the molecular
diffusivities of the two scalars caused the scalars to decorrelate with time, an effect
commonly known as differential diffusion. In this study, the focus was on developing
a spectral model that was conservative and realizable, where ‘realizable’ here refers
to a covariance spectrum that satisfies the Cauchy–Schwartz inequality.

We observed that the standard EDQNM model does not satisfy this more stringent
realizability constraint. By considering the underlying Langevin equation for the scalar
autocorrelations, it was possible to construct a spectral equation for the covariance
spectrum that was fully realizable. However, this model did not properly conserve the
transfer of the covariance spectrum without restricting the definitions of the inverse
time scales. In particular, these time scales must be independent of the molecular
diffusivities of the two scalars in order to produce a model that properly conserves
the covariance spectrum and is realizable for all time. It is important to note that
this restriction does not imply that the transfer terms are independent of the scalar
diffusivities. Rather, they retain an implicit dependence through the scalar spectra,
which in turn depend on the scalar diffusivities. Thus, it is believed that the present
model can accurately describe the effects of differential diffusion in passive scalars.

Next, the EDQNM model for an axisymmetric scalar covariance spectrum was
considered by introducing uniform mean gradients into the two scalars φα and φβ .
In this case, all spectra are shown to be functions of the wavenumber k and the
cosine of the angle between the vector k and the direction of the mean gradient
(here called µ). The straightforward application of the EDQNM procedure yields a
covariance spectrum that likewise violates the Cauchy–Schwartz inequality. However,
in this case it was not possible to construct a Langevin equation that reproduces all
of the interactions found in the EDQNM model for the scalar–scalar and scalar–
velocity spectra; thus, no formal approach to seeking a realizable spectrum exists.
Instead, we applied the results obtained for the isotropic spectrum. By eliminating
the dependence of the inverse time scales on the scalar molecular diffusivities, the
model for the covariance spectrum was realizable for all times and combinations of
the parameters considered.

The applicability of the result from the isotropic scalar study to the mean gradient
case suggests that the strategy may have broader implications for Markovian models.
For example, it was noted in the isotropic study that under circumstances where φ′α
and φ′β are perfectly correlated, we expect the scalar transfer terms Trα, Trβ and Trαβ

to be equal. The EDQNM model, with the original definitions for the inverse time
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scales, in general cannot satisfy this constraint because of the explicit dependence of
the transfer functions on the molecular diffusivities. It now appears that this may
cause the unrealizable covariance spectrum at early times.

The above explanation suggests that any model that introduces an explicit depen-
dence of the triple correlations (transfer spectra) on the scalar diffusivities will likely
suffer from the same problem. Models with more accurate evolution equations for the
θ-coefficients may avoid this problem at the price of adding substantially to the cost
of the calculation. Recall that the number of coefficients to be evaluated corresponds
to the number of k–p–q combinations in the calculation, which is of the order of N3

for N grid points. In the absence of very large computational resources, it may be
necessary to modify the coefficients as suggested here to eliminate unrealizable results
in the computationally tractable Markovian models.

In closing, we note that this is the first half of a two-part study of differential
diffusion using spectral models. In a companion paper (Ulitsky, Vaithianathan &
Collins 2000), the second half of the study will consider in greater depth the nature
and rate of decorrelation of the two scalar spectra as well as investigate the role of
local vs. non-local triadic interactions in scalar transfer. Additionally, comparisons of
the proposed EDQNM model with DNS will be presented.
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work was supported by the United State Department of Energy Accelerated Strategic
Computing Initiative (ASCI) program and Los Alamos National Laboratory, Group
T-3. Partial support for one of the authors (L. R. C.) was provided by the National
Science Foundation CTS-9732223.

Appendix. Relationship between the present notation for the transfer
spectrum and the classical notation in Lesieur (1987)

In this Appendix, we show how (2.18) is equivalent to the equation for the transfer
spectrum given in Lesieur (1987). The EDQNM form for Trα(k) in Lesieur (1987) is
given by ∫∫

∆

k

pq
(1− y2)E(q)

[
k2ET (p, t)− p2ET (k, t)

]
θTkpq dp dq. (A 1)

Here ET ( ) is equivalent in our notation to Eα
φ( ) and θTkpq is equivalent to θ

(
αµ

qkp
M

)
.

If we define a vector N to be normal to the plane formed by k, p, and q, then N can
be calculated by

N = k × p = p × q = q × k. (A 2)

Thus, N ≡ |N | is twice the area of the triangle formed by k, p and q and N2 takes
the value of

N2 = k2p2(1− z2) = p2q2(1− x2) = k2q2(1− y2). (A 3)

Note that we can also use Heron’s formula to express N2 in terms of k, p, and q as
was done in (2.24).

Switching the dummy variables of integration in (2.18) gives the following equivalent
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expression for Trα(k):

Trα(k, t) =

∫∫
∆

[
g1(k, q, p)E(q)Eα

φ(p, t)− g2(k, q, p)E(q)Eα
φ(k, t)

]
θ
(
αµ

qkp
M

)
dp dq.

(A 4)

If we then substitute N2 = k2q2(1− y2) into the definitions of g1(k, q, p) and g2(k, q, p),
we obtain ∫∫

∆

k

pq
(1− y2)E(q)

[
k2Eα

φ(p, t)− p2Eα
φ(k, t)

]
θ(αµqkpM ) dp dq. (A 5)

Thus, the two equations for Trα are seen to be equivalent. It should be noted that
our definitions of x, y, and z differ from those given in Lesieur (1987). For example,
we chose to define y as the cosine of the angle between the k and q vectors. Lesieur,
however, defines y as the cosine of the angle in the interior of the triad whose adjacent
sides are k and q. Therefore, the two definitions of y differ by a minus sign, as the
angles are separated by π radians. The same applies for x and z. In (A 1) or (A 5),
this difference in definitions is irrelevant since y is raised to an even power.
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